
dClips: A DISTRIBUTED CLIPS IMPLEMENTATION

N95- 34243

Y. Philip Li

li@aero.org

Aerospace Corporation

June 30,1993
,!i_t.'

Abstract

A distributed version of the Clips language,

dClips, was implemented on top of two existing
generic distributed messaging systems to show that:

(1) it is easy to create a coarse-grained parallel

programming environment out of an existing language
if a high level messaging system is used, (2) the

computing model of a parallel programming

environment can be changed easily if we change the
underlying messaging system, dClips processes were
first connected with a simple master-slave model. A

client-server model with intercommunicating agents
was later implemented. The concept of service broker
is being investigated.

Introduction

In the process of exploring the opportunities
of utilizing multiple workstations on a network as a

single parallel computing environment, we have built

a simple distributed Clips environment, named

dClips, running with multiple parallel Clips

processes on a Sun network. Clips, C language
integrated production system [Clips91], is a forward-

chaining rule-based language with object definition

capability. Clips was developed by NASA Johnson
Space Center.

dClips, was implemented on top of two

existing generic distributed messaging systems to

show that: (1) it is easy to create a coarse-grained

parallel programming environment out of an existing
language if a high level messaging system is used as

the underlying layer, (2) the computing model of a

parallel programming environment can be changed

easily if we change the underlying messaging system.

In this paper, we describe two versions of dClips

implementation on top of two different messaging

systems. One messaging system supports only the
master-slave model while the other supports a much
more flexible communication scheme.

A Master-Slave Model for Task Assignment

dClips was first implemented on top of AERO
[Sullivan89], the Asynchronously Executed Remote

Operations from UC Berkeley. AERO allows
parallel programming in a master-slave mode on a

UNIX network. Communication is only allowed
between the master and slaves, but not in between

slaves. The master process can assign tasks
asynchronously, but it has to block and wait for the
result to come back.

As depicted in Figure 1, a single dClips
master process controls multiple dClips slave

dClips Slave

dClips Slave

dClips Slave

dClips Slave

Legend: G

Request (Task Assignme_nt)

Figure 1. Master-Slave Model for dClips

i_--99



processes.Themasterprocessfirst asksall the slave

processes to load the necessary Clips constructs (i.e.,
rules, objects, and functions) from the file system into
their runtime environments. The master then assigns

tasks to slave dClips processes by one of the following
three methods:

i). Assert a fact into Clips knowledge base -- This

request from the master process is executed on all the

slave processes simultaneously. If a slave process is

busy, it first finishes its current task then asserts the

fact. By asserting facts into the working memory of

slave processes, the master process could change the

inferencing process in the slaves.

ii). Call a Clips function -- Any built-in Clips
function and user-defined functions in a slave process

can be called from the dClips master process. This is

a form of remote procedure call in the context of Clips

language. Also, the state of the working memory of a

dClips slave process can be examined by the master

by issuing Clips function call. This allows the master
to decide if further task assignment is necessary.

iii). Send a message to a Clips object -- A Clips object

message can be sent from the dClips master process to

dCiips slave processes. An active object instance
within the slave process can receive messages and

process the messages based on the behaviors defined

in a message handler.

This version of the dClips implementation is

done in C using Clips 5.1. Four function calls are
available between the dClips master and slave

processes: loadClipsConstruct, assertClipsFact,

callClipsFunction, and sendClipsMessage. The

loadClipsConstruct primitive can take a list of
construct-files (i.e., a file with Clips rules, objects,

and functions) and process them based on the sequence

of the list elements. The sequence in the list is the

sequence of execution in the loading process. For

example, the list (function.clp object.clp rule.clp)
will cause a slave process to load function.clp first,

object.clp next, and rule.clp last.

The assertClipsFact primitive takes a string

with a single Clips fact and requests every slave to
assert it into the knowledge base. The

callClipsFunction primitive takes a string with a

single function name and the function parameters, and

sends it to all the slave processes.

The sendClipsMessage primitive is also

capable of passing a list of messages from master to
slave. Each message is itself a list in the form:
(class-name instance-name method-name method

args). The slave that receives a sendCiipsMessage

request processes the messages based on the sequence
of the list elements. This allows multiple class

methods to be defined and executed in sequence as a

single work assignment.

An Application

A Clips-based image data access application,

DataHub [Handley92], has been ported to the

dClips/Aero environment. The master process issues
concurrent image data access/conversion requests for

different dataset types. Each dataset type has
different data format and data semantics. The

knowledge about the image datasets is stored in Clips
constructs, and loaded by the slave processes at

startup time. One dataset type is handled by one

slave process. There is no interaction needed among

slave processes. Data conversion tasks are both CPU
intensive due to format changes (e.g., byte swap, data

decompression) and l/O extensive due to massive read
and write of files.

dClips Slave
Data Access

dClips Master

DataHub Data
Manager

dClips Slave
Viking Data Access

dClips Slave
Voyager Data Access

dClips Slave
Magellan Data Access

Figure 2. DataHub Data Manager on top of dClips

g--lOO



TheDataHubdatamanagerwith the same
master-slavetaskassignmentschemehasalsobeen
ported to the dClips/ISIS environment (see next

section for details). The master slave model stays
with the ISIS implementation because of the nature

of the application, rather than the limitation of the

ISIS computing model.

A Client-Server Model with Service Brokers

The master-slave process model imposed by

AERO is not desirable if we want to build systems

with communicating intelligent agents. After
evaluating Sun's ToolTalk TM [ToolTalk91] and
Cornelrs ISIS [ISIS90] for an alternative distributed

computing model, we decided to build dClips on top of
ISIS. ToolTalk was not chosen because: 1) the

message arrival sequence from multiple senders in a

network environment is not guaranteed, 2) only 1

handler is allowed for a request message (others are

observers). Message arrival sequence is important

because the arrival sequence of messages for asserting
a fact or for updating object instances in the dClips

environment is critical to the local Clips inferencing

process. Different message arrival patterns could
result in different inference outcomes. Furthermore,

the constraint of having a single handler for a

request message makes it unnatural for task

distribution/assignment in a parallel programming
environment.

On the other hand, ISIS, developed at
Cornell University, provides a set of tools built

around virtually synchronous process groups and

reliable group multicast [Birman91]. A virtually

synchronous distributed system has the following
characteristics: (1) all processes observe events in the

same order (global order and causality), (2) an event
notification is delivered to all or none of the audience

(atomicity). A virtually synchronous system looks

synchronous to every process in the system, but

executes asynchronously. For the dClips
implementation, the virtually synchronous broadcast

(cbeast, for causal broadcast), which guarantees the

causality and atomicity, was the main reason for

using ISIS as the underlying distributed computing
model.

Figure 3 shows the architecture of ISIS-based

dCiips, where a set of dCiips Server processes team

up with a dClips Administrator process to form a

process group. This process group provides the

cooperative problem solving capability to the outside

world. The dClips Administrator plays the role of a

service broker, providing a consistent interface to the

outside clients, while the details of the server

processes are transparent to the clients. The interface

between a service broker and its clients has yet to be
defined. At this point, the CORBA (Common Object

Request Broker Architecture) IDL (interface

definition language) type interface is being
considered [OMG91]. The interface between the

dClips Administrator and the dClips Servers is a

shared knowledge base with a set of common access
methods.

The dClips Servers form a conceptual

hierarchy, which is known to the dClips world, but is
not visible to the ISIS environment. In other words,

this Server hierarchy is not a hierarchy of ISIS
process groups. In the ISIS environment, all the

servers are equal members of a single process group.

Broadcasts to the group will reach every server

process in the same order. Each server is an

autonomous problem solving agent with its own
knowledge base and its own task. The Server

hierarchy defined within dClips environment helps

a server to find another potential problem solver if a

problem cannot be solved locally.

A shared knowledge base is available to
dClips Servers for knowledge exchange and

interaction, which is designed to facilitate the

cooperative problem solving process conducted by

multiple dClips Servers. At the same time, each

dClips server can have its own individual non-shared

knowledge base. The Server hierarchy is defined as
a Clips Class Hierarchy within the shared

knowledge base, which is known to every server. The

message communication between servers can be" (1) a

broadcast to the whole process group, or (2) a message

to a designated server.

The shared knowledge base is realized by having a
set of Clips constructs replicated in each server. Each

server loads in this shared knowledge base at
initialization time. Any update to any of the objects

in this shared knowledge base in any dClips Server

will trigger a broadcast of the update to other

members in the process group. A server applies the

updates sent in from other servers one by one as if

they are local updates to the knowledge base. Since

the shared knowledge is designed to keep only the
critical knowledge that needs to be shared among

servers, the size of this shared knowledge base

should be small. The effort to keep it consistent

across multiple servers, i.e., sending and receiving

update messages and applying updates triggered by

remote update messages, should be minimal.

E-IOI



Clients
I Service

I Brokers

dClips

Servers

_s Server
ps Server

dClips Server
_s Server

Legond:_ Request Messa=_ge

dClips
Process

Group

J

Process_

GroupJ

Figure 3. Architecture of ISIS-based dClips

Future Opportunities

Based on the client-server model of dClips, we would

like to pursue the following extensions:

i). dClips with Database Access Capability -- This

involves a dClips database gateway, which runs as a
database client to some database server. An

intelligent agent can not be intelligent without

necessary knowledge about the real world. Accessing

existing databases is one way of acquiring
data/knowledge from the outside world. As shown in

Figure 4, a database pass-through process can serve as

the gateway to the database server. The function of
this gateway can be as simple as passing a SQL
statement to a relational database system and

receiving the results back in a buffer. Or it can

provide more sophisticated functions such as

allowing joins of tables across multiple database

systems.

ii). A distributed blackboard system on top of dClips

-- The ISIS-based dClips implementation can easily
evolve into a distributed blackboard system. This can

be done by making dClips server processes run as
knowledge sources in a blackboard system and by

f

Process

Group I

I Service I
Clients Brokers

I
Servers

dClips
Administrator

ps Server dClips Server

Process

Group 2

dClips Server

dClips
db tatabase server

I

I I

Process

Group 3J

DBMS database

Legend:_ Request Message (_

Figure 4. dClips with Database Access Capability

B-102



using the shared knowledge base among dCiips
servers as the blackboard [Nii86]. A blackboard

system like this is a realization of the original
blackboard metaphor because there is no

centralized control mechanism involved in the

blackboard reasoning process. Each knowledge
source reacts only to the change on the blackboard.

A domain problem can be solved cooperatively this
way by multiple knowledge sources.

References

[Birman91] Birman, K., Schiper, A., Stephenson, P.,

Lightweight Causal and Atomic Group
Multicast, ACM Transactions on

Computer Systems, Vol. 9, #3, August
1991.

[Clips91] Clips, Version 5.1, Reference Manual,

Software Technology Branch, Johnson

Space Center, Sep. 1991.

[Handley92] Handley, T., Li, Y. P., DataHub:

Knowledge-based Data Manage-ment
for Data Discovery, ISY Conference on

Earth and Space Science Information
Systems, Feb. 10-13, 1992.

[ISIS90] ISIS, Version 2.1, User's Guide and

Reference Manual, Cornell University,
Sep. 1990.

[Nil86] Nil, H. P., Blackboard System: The Black-

board Model of Problem Solving and
the Evoluatioin of Blackboard Archi-

tectures, THE AI Magazine, Summer,

1986, p. 38-53.

[OMG91 ] Object Management Group and X/Open,

Common Object Request Broker:

Architecture and Specification,
December 1991.

[Sullivan89] Sullivan, M., Anderson, D., Marionette

(Also Known As Aero): a System for

Parallel Distributed Programming
using a Master Slave Model, IEEE 9th
International Conference on Distributed

Computing Systems, 1989.

[ToolTalk91] TookTalk, Version 1,0, Programmer's
Guide, Sunsoft, Dec. 1991.

Frl03



.p

f

!i
(/) ._.

°, _-_ _°
(/) I_ I) O
• • _0

o

.o,_ _ : = ®J::: (_ E

,,- _0>(_ (_

_,,, _ _,.,._ _ : o

re,E: i _ :.o= _e=
:_-._7 _ _ o

_1 ,_ _o ___
_:_ E_ _ " " " " "

o

E,-104

Y


